论文标题

整体动机的几何萨克斯等效性

The geometric Satake equivalence for integral motives

论文作者

Cass, Robert, Hove, Thibaud van den, Scholbach, Jakob

论文摘要

我们证明了在积分动机共同体学谱系上混合泰特动机的几何表现等效性。这是针对分裂组和力量系列植树的先前版本的几何萨克斯等效性。我们的新几何结果包括贝林森 - 德林菲尔德司法的惠特尼 - 泰特特分层以及半侵入轨道的细胞分解。考虑到未来的全球应用,我们还相对于仿射线的力量达到了等效性。最后,我们利用等效性为DeLigne对双重组的修改以及Vinberg在整数上的Monoid的修改形式提供了Tannakian的构造。

We prove the geometric Satake equivalence for mixed Tate motives over the integral motivic cohomology spectrum. This refines previous versions of the geometric Satake equivalence for split groups and power series affine Grassmannians. Our new geometric results include Whitney-Tate stratifications of Beilinson-Drinfeld Grassmannians and cellular decompositions of semi-infinite orbits. With future global applications in mind, we also achieve an equivalence relative to a power of the affine line. Finally, we use our equivalence to give Tannakian constructions of Deligne's modification of the dual group and a modified form of Vinberg's monoid over the integers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源