论文标题
Lebesgue可衡量的增益IV:开放式Riemann表面的产品
Concavity property of minimal $L^2$ integrals with Lebesgue measurable gain IV: product of open Riemann surfaces
论文作者
论文摘要
在本文中,我们介绍了最小$ l^2 $积分的凹陷属性的特征,而在开放式Riemann表面的产品上,分析子集的产物是线性的。作为应用,我们获得了在最佳喷气机中保持平等的特征,从分析子集的产品到开放式Riemann表面的产品,这意味着suta supentality supentality posertity supational soptional supentality supentality supentality supenture and Extenceed supented supented supenture的产品版本的表征,以及持有Ohsawa for Open for Operance Riemann Riemann Riemann surface surf surf surf surf surf surf surf surf surf surf。
In this article, we present characterizations of the concavity property of minimal $L^2$ integrals degenerating to linearity in the case of products of analytic subsets on products of open Riemann surfaces. As applications, we obtain characterizations of the holding of equality in optimal jets $L^2$ extension problem from products of analytic subsets to products of open Riemann surfaces, which implies characterizations of the product versions of the equality parts of Suita conjecture and extended Suita conjecture, and the equality holding of a conjecture of Ohsawa for products of open Riemann surfaces.