论文标题

精确,最佳地在均方根时间中采样边缘

Sampling an Edge in Sublinear Time Exactly and Optimally

论文作者

Eden, Talya, Narayanan, Shyam, Tětek, Jakub

论文摘要

从司额时间中的图中抽样边缘是一个基本问题,也是设计sublrinear-time算法的功能强大的子例程。假设我们可以访问图形的顶点,并且知道边缘数量的恒定因子近似值。 Eden and Rosenbaum [SOSA 2018]给出了Pointsise $ \ Varepsilon $ -Varepsilon $ -Appro-Appro-Appro-Approximate Edge采样$(N/\ SQRT {\ varepsilon m})$。 TěTek和Thorup [Stoc 2022]随后将其改进到$ O(n \ log(\ varepsilon^{ - 1})/\ sqrt {m})$。同时,$ω(n/\ sqrt {m})$时间是必要的。我们通过给出具有复杂性$ o(n/\ sqrt {m})$的算法来解决问题,以完全均匀地采样边缘。

Sampling edges from a graph in sublinear time is a fundamental problem and a powerful subroutine for designing sublinear-time algorithms. Suppose we have access to the vertices of the graph and know a constant-factor approximation to the number of edges. An algorithm for pointwise $\varepsilon$-approximate edge sampling with complexity $O(n/\sqrt{\varepsilon m})$ has been given by Eden and Rosenbaum [SOSA 2018]. This has been later improved by Tětek and Thorup [STOC 2022] to $O(n \log(\varepsilon^{-1})/\sqrt{m})$. At the same time, $Ω(n/\sqrt{m})$ time is necessary. We close the problem, by giving an algorithm with complexity $O(n/\sqrt{m})$ for the task of sampling an edge exactly uniformly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源