论文标题
以重组作为大都市危机抽样程序的进化
Evolution with recombination as a Metropolis-Hastings sampling procedure
论文作者
论文摘要
这项工作提出了一种人群的进化遗传模型,其中包括单倍体选择,突变,重组和漂移。突变选择平衡可以以封闭形式以任意适应性函数的形式表达,而无需诉诸扩散近似。通过使用N-父母而不是2-父母重组产生新的后代来实现障碍。尽管这实施了后代之间的连锁平衡,但它允许在连锁不平衡下对整个人群进行分析。我们得出了适应性波动与选择反应之间的一般和确切的关系。我们的假设允许分析模型的固定分布的各种非平凡适应性函数。这些结果使我们可以与遗传结构进行交谈,即不同适应性功能产生的固定分布。本文介绍了准确得出有限和无限种群的固定状态的方法。该方法可以应用于许多适应性功能,我们为其中的四个提供了精确的计算。这些结果使我们能够调查稳定性,健身功能之间的权衡,甚至考虑校正错误的代码
This work presents a population genetic model of evolution, which includes haploid selection, mutation, recombination, and drift. The mutation-selection equilibrium can be expressed exactly in closed form for arbitrary fitness functions without resorting to diffusion approximations. Tractability is achieved by generating new offspring using n-parent rather than 2-parent recombination. While this enforces linkage equilibrium among offspring, it allows analysis of the whole population under linkage disequilibrium. We derive a general and exact relationship between fitness fluctuations and response to selection. Our assumptions allow analytical calculation of the stationary distribution of the model for a variety of non-trivial fitness functions. These results allow us to speak to genetic architecture, i.e., what stationary distributions result from different fitness functions. This paper presents methods for exactly deriving stationary states for finite and infinite populations. This method can be applied to many fitness functions, and we give exact calculations for four of these. These results allow us to investigate metastability, tradeoffs between fitness functions, and even consider error-correcting codes