论文标题
在离散的动力系统建模假设上求解方程的算法管道对真实现象的假设
An Algorithmic Pipeline for Solving Equations over Discrete Dynamical Systems Modelling Hypothesis on Real Phenomena
论文作者
论文摘要
本文提供了一种算法管道,用于研究有限离散动力系统(DDS)对不断发展的现象进行建模的固有结构。在这里,通过固有结构,我们的意思是关于观察到的DD的动力学,这是由两个或多个较小DD的动力学的“合作”产生的特征。固有结构由DDS上的方程式描述,该方程代表了观察到的现象的假设。该管道允许求解这种方程式,即验证现象上的假设,涉及渐近行为和正在观察到的DDS的状态的数量。结果是关于管道的健全性和完整性,它们是通过利用[10]中引入的DDS的代数设置而获得的。
This paper provides an algorithmic pipeline for studying the intrinsic structure of a finite discrete dynamical system (DDS) modelling an evolving phenomenon. Here, by intrinsic structure we mean, regarding the dynamics of the DDS under observation, the feature of resulting from the "cooperation" of the dynamics of two or more smaller DDS. The intrinsic structure is described by an equation over DDS which represents a hypothesis over the phenomenon under observation. The pipeline allows solving such an equation, i.e., validating the hypothesis over the phenomenon, as far the asymptotic behavior and the number of states of the DDS under observation are concerned. The results are about the soundness and completeness of the pipeline and they are obtained by exploiting the algebraic setting for DDS introduced in [10].