论文标题

复杂流体的广义Lagrangian异质多尺度建模

Generalized Lagrangian Heterogenous Multiscale Modeling of Complex Fluids

论文作者

Moreno, Nicolas, Ellero, Marco

论文摘要

我们引入了全亚拉格朗日的异质多尺度方法(LHMM),以模拟具有微观特征的复杂流体,这些特征可以扩展到大型时空尺度上,例如聚合物溶液和多相系统。提出的方法使用平滑的耗散粒子动力学(SDPD)在基于粒子的设置中离散了波动的Navier-Stokes方程。这种多尺度方法使用直接得出的微观信息来提供宏观问题问题中动量平衡的应力张量,因此绕开了应力近似构型关系的需求。我们利用SDPD的固有多尺度特征来解释热波动,因为离散粒子的特征大小降低。我们使用不同的流程构型(反向Poiseuille流,通过气缸阵列以及围绕平方腔的流动)和流体(牛顿和非牛顿)来验证LHMM。我们展示了该框架使用多相和聚合系统在微观尺度上对复杂流体进行建模的灵活性。我们表明,应力被充分捕获并从微观尺度传递到宏观尺度,从而导致连续体的流体反应更丰富。通常,所提出的方法提供了宏观上的变化之间的自然联系,而对显微镜的记忆效应也是如此。

We introduce a full-Lagrangian heterogeneous multiscale method (LHMM) to model complex fluids with microscopic features that can extend over large spatio-temporal scales, such as polymeric solutions and multiphasic systems. The proposed approach discretizes the fluctuating Navier-Stokes equations in a particle-based setting using Smoothed Dissipative Particle Dynamics (SDPD). This multiscale method uses microscopic information derived on-the-fly to provide the stress tensor of the momentum balance in a macroscale problem, therefore bypassing the need for approximate constitutive relations for the stress. We exploit the intrinsic multiscale features of SDPD to account for thermal fluctuations as the characteristic size of the discretizing particles decrease. We validate the LHMM using different flow configurations (reverse Poiseuille flow, flow passing a cylinder array, and flow around a square cavity) and fluid (Newtonian and non-Newtonian). We showed the framework's flexibility to model complex fluids at the microscale using multiphase and polymeric systems. We showed that stresses are adequately captured and passed from micro to macro scales, leading to richer fluid response at the continuum. In general, the proposed methodology provides a natural link between variations at a macroscale, whereas accounting for memory effects of microscales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源