论文标题

Lebesgue可衡量收益VI的最小$ l^2 $积分的凹度属性

Concavity property of minimal $L^2$ integrals with Lebesgue measurable gain VI: fibrations over products of open Riemann surfaces

论文作者

Bao, Shijie, Guan, Qi'an, Yuan, Zheng

论文摘要

在本文中,我们介绍了最小$ l^2 $积分的凹陷属性的特征,而在开放式Riemann表面的产品上,纤维化为线性。作为应用,我们获得了最佳喷气机中保持平等的特征,从分析子集的纤维上的纤维到扩展问题到开放式Riemann表面的纤维,这意味着苏塔构想的平等部分的表征和扩展的Suita猜测的表征,对开放式Riemann Riemann riemann curface of Fibrations for Eutighations in for Enfibrations。

In this article, we present characterizations of the concavity property of minimal $L^2$ integrals degenerating to linearity in the case of fibrations over products of open Riemann surfaces. As applications, we obtain characterizations of the holding of equality in optimal jets $L^2$ extension problem from fibers over products of analytic subsets to fibrations over products of open Riemann surfaces, which implies characterizations of the equality parts of Suita conjecture and extended Suita conjecture for fibrations over products of open Riemann surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源