论文标题

非临界性和远程效果

Multi-criticality and long-range effects in non-Hermitian topological models

论文作者

Kartik, Y R, Sarkar, Sujit

论文摘要

远程效应引起了一些有趣的行为,并被视为了解量子系统中非本地行为的门户。尤其是,远程拓扑模型成为实现新的准颗粒的平台,据信这是拓扑量子的潜在候选者。在这项工作中,我们考虑了非热的Su-Schriffer-Heeger(SSH)模型,并讨论非热性和远程效应的相互作用。我们使用动量空间表征,关键指数和曲率重新归一化组(CRG)方法的方法来了解相互作用的各个方面。长距离(有限的邻居)效应会产生较高的绕组数,在该数字中,我们观察到偶数和奇数绕组数的楼梯,这取决于相互作用的邻居数量。在这里,我们还强调了系统在系统中的效果,并表明它们属于不同的普遍性类别。远距离(无限邻居)效应和非热性的相互作用会产生分数拓扑结构,我们从伪旋转矢量的行为中分析它们。我们还通过关键指数的通用类别确定模型的远程和短距离限制。我们的工作主要展示了拓扑系统中的关键性研究如何在探索非热性和远距离效应的相互作用方面有趣。

Long-range effects induce some interesting behavior and considered as a gateway to understand the non-local behavior in the quantum systems. Especially, the long-range topological models became a platform for the realization of new quasi-particles, which are believed to be potential candidates for the topological qubits. In this work, we consider non-Hermitian Su-Schriffer-Heeger (SSH) model and discuss the interplay of non-Hermiticity and long-range effects. We use the approach of momentum space characterization, critical exponents and curvature renormalization group (CRG) method to understand the aspects of interplay. The longer-range (finite neighbors) effect produces higher winding numbers, where we observe a staircase of transitions among the even-even and odd-odd winding numbers which depends on the number of interacting neighbors. Here we also highlight the effect of multi-criticality in the system and show that they belong to a different universality class. The interplay of long-range (infinite neighbors) effect and non-Hermiticity produces fractional topological invariants, and we analyze them from the behavior of pseudo-spin vectors. We also determine the long-range and short-range limit of the model through universality class of critical exponents. Our work mainly showcases that how the study of criticality in topological system is interesting in exploring the interplay of non-Hermiticity and long-range effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源