论文标题
量子力学中的非热汉密尔顿变形
Non-Hermitian Hamiltonian Deformations in Quantum Mechanics
论文作者
论文摘要
通过考虑可集成的$ t \ bar {t} $变形和相关的汉密尔顿变形,量子力学中的$ t \ bar {t} $变形,已推进了准确可溶的模型的构建。我们在非依赖主义环境中引入了更广泛的非富米顿汉密尔顿变形,以说明大量开放量子系统的描述,例如,包括任意马尔可夫的演变,其条件是缺乏量子跳跃。我们将时间演化运算符和随时间变化和变形的理论中的时间变化密度矩阵与特定核的整体变换有关。非热汉密尔顿的变形自然出现在对能量扩散的描述中,这些能量扩散在量子系统中从用于跟踪时间演变的真实时钟中的时钟中出现的量子系统中出现。我们表明,后者可以与纯粹虚拟变形参数的反向$ t \ bar {t} $变形有关。在这种情况下,当初始状态是连贯的吉布斯状态或热场双状态时,积分变换会采用特别简单的形式,正如我们通过表征纯度,rényi熵,对数否定性和光谱形式的表征所说明的那样。由于可以在liouville空间中方便地描述量子系统的耗散演化,因此我们进一步讨论了liouvillians的光谱特性,即与变形理论相关的动力学发生器。作为应用程序,我们讨论了随机基质汉密尔顿人与Sachdev-ye-Kitaev模型的非富甲虫变形中的变形与量子混乱之间的相互作用。
The construction of exactly-solvable models has recently been advanced by considering integrable $T\bar{T}$ deformations and related Hamiltonian deformations in quantum mechanics. We introduce a broader class of non-Hermitian Hamiltonian deformations in a nonrelativistic setting, to account for the description of a large class of open quantum systems, which includes, e.g., arbitrary Markovian evolutions conditioned to the absence of quantum jumps. We relate the time evolution operator and the time-evolving density matrix in the undeformed and deformed theories in terms of integral transforms with a specific kernel. Non-Hermitian Hamiltonian deformations naturally arise in the description of energy diffusion that emerges in quantum systems from time-keeping errors in a real clock used to track time evolution. We show that the latter can be related to an inverse $T\bar{T}$ deformation with a purely imaginary deformation parameter. In this case, the integral transforms take a particularly simple form when the initial state is a coherent Gibbs state or a thermofield double state, as we illustrate by characterizing the purity, Rényi entropies, logarithmic negativity, and the spectral form factor. As the dissipative evolution of a quantum system can be conveniently described in Liouville space, we further discuss the spectral properties of the Liouvillians, i.e., the dynamical generators associated with the deformed theories. As an application, we discuss the interplay between decoherence and quantum chaos in non-Hermitian deformations of random matrix Hamiltonians and the Sachdev-Ye-Kitaev model.