论文标题
挫败量子自旋系统的变压器变分波函数
Transformer variational wave functions for frustrated quantum spin systems
论文作者
论文摘要
变压器体系结构已成为自然语言处理任务的最先进模型,并且最近也用于计算机视觉任务,从而定义了视觉变压器(VIT)体系结构。关键特征是能够通过所谓的自我发项机制来描述输入序列元素之间的远程相关性。在这里,我们提出了具有复杂参数的VIT体系结构的适应,以定义用于量子多体系统的新一类变异神经网络状态,即VIT波函数。我们将此想法应用于一维$ J_1 $ - $ J_2 $ HEISENBERG型号,表明相对简单的参数化对于Gapped和Gapless阶段都能获得出色的结果。在这种情况下,通过相对较浅的体系结构获得了出色的精度,并具有一层的自我注意力,因此很大程度上简化了原始体系结构。尽管如此,更深层结构的优化是可能的,可以用于更具挑战性的模型,最著名的是在二维中高度效率的系统。 VIT波函数的成功依赖于混合本地和全球操作,从而使能够具有很高准确性的大型系统进行研究。
The Transformer architecture has become the state-of-art model for natural language processing tasks and, more recently, also for computer vision tasks, thus defining the Vision Transformer (ViT) architecture. The key feature is the ability to describe long-range correlations among the elements of the input sequences, through the so-called self-attention mechanism. Here, we propose an adaptation of the ViT architecture with complex parameters to define a new class of variational neural-network states for quantum many-body systems, the ViT wave function. We apply this idea to the one-dimensional $J_1$-$J_2$ Heisenberg model, demonstrating that a relatively simple parametrization gets excellent results for both gapped and gapless phases. In this case, excellent accuracies are obtained by a relatively shallow architecture, with a single layer of self-attention, thus largely simplifying the original architecture. Still, the optimization of a deeper structure is possible and can be used for more challenging models, most notably highly-frustrated systems in two dimensions. The success of the ViT wave function relies on mixing both local and global operations, thus enabling the study of large systems with high accuracy.