论文标题
过渡到混乱和模态结构
Transition to chaos and modal structure of magnetized Taylor-Couette flow
论文作者
论文摘要
Taylor-Couette流量通常用作恒星内部和增生磁盘内部复杂旋转流的简化模型。这些物体中的流动动力学受磁场的影响。例如,如果传导流体,则在泰勒 - 库特几何形状中的准胜地流对在外部磁场中的行进波或驻波不稳定。即使流动在流体动力学稳定的情况下,也存在不稳定。当气缸旋转足够快时,这种磁性不稳定导致混乱状态的发展,并最终导致湍流。该流量中向湍流的过渡可能是复杂的,与时空混乱的参数区域的共存和具有准周期性行为的区域,涉及一个或两个附加的调节频率。尽管可以通过Floquet分析来识别周期性流的不稳定模式,但在这里我们采用了更灵活的无数据驱动方法。我们分析了从磁化的泰勒 - 库特流中的过渡到混乱的数据,并确定与动态模式分解的调节频率相关的流结构;该方法基于使用线性无限二维Koopman操作员近似非线性动力学。通过使用这些结构,可以为过渡构建非线性还原模型。
Taylor-Couette flow is often used as a simplified model for complex rotating flows in the interior of stars and accretion disks. The flow dynamics in these objects is influenced by magnetic fields. For example, quasi-Keplerian flows in Taylor-Couette geometry become unstable to a travelling or standing wave in an external magnetic field if the fluid is conducting; there is an instability even when the flow is hydrodynamically stable. This magnetorotational instability leads to the development of chaotic states and, eventually, turbulence, when the cylinder rotation is sufficiently fast. The transition to turbulence in this flow can be complex, with the coexistence of parameter regions with spatio-temporal chaos and regions with quasi-periodic behaviour, involving one or two additional modulating frequencies. Although the unstable modes of a periodic flow can be identified with Floquet analysis, here we adopt a more flexible equation-free data-driven approach. We analyse the data from the transition to chaos in the magnetized Taylor-Couette flow and identify the flow structures related to the modulating frequencies with Dynamic Mode Decomposition; this method is based on approximating nonlinear dynamics with a linear infinite-dimensional Koopman operator. With the use of these structures, one can construct a nonlinear reduced model for the transition.