论文标题
关于广义多维激发随机步行的瞬时注释
A note on transience of generalized many-dimensional excited random walks
论文作者
论文摘要
我们考虑在尺寸$ d \ ge 2 $中的广义激发随机步行(GERW)的变体,其中兴奋跳跃的漂移下的下限与时间有关,并且衰减降至零。我们表明,如果下限衰减较慢,则$ n^{ - β} $($ n $是时间),对于$β$,取决于过程的过渡,GERW是在漂移方向上的暂时性。
We consider a variation of the Generalized Excited Random Walk (GERW) in dimension $d\ge 2$ where the lower bound on the drift for excited jumps is time-dependent and decays to zero. We show that if the lower bound decays slower that $n^{-β}$ ($n$ is time), for $β$ depending on the transitions of the process, the GERW is transient in the direction of the drift.