论文标题
量子密钥分配速率来自半决赛编程
Quantum key distribution rates from semidefinite programming
论文作者
论文摘要
计算量子密钥分布(QKD)协议的关键速率是一个长期的挑战。分析方法仅限于具有高度对称测量基础的少数协议。数值方法可以处理任意测量库,但要么使用最小内向拷贝,这使得与von Neumann熵的下限松散,要么依赖于麻烦的专用算法。基于最近发现的半决赛编程(SDP)层次结构,该层次结构收集到条件性von Neumann熵,用于计算设备无关的情况下的渐近密钥速率,我们引入了SDP层次结构,该层次结构收敛到具有特征性手段的情况下,将其收敛到渐近秘密密钥速率。所得算法效率很高,易于实现且易于使用。我们通过在关键率上恢复已知界限并将高维QKD方案扩展到以前棘手的案例来说明其性能。我们还使用它来重新分析实验数据,以证明当考虑到完整的统计数据时如何达到更高的关键率。
Computing the key rate in quantum key distribution (QKD) protocols is a long standing challenge. Analytical methods are limited to a handful of protocols with highly symmetric measurement bases. Numerical methods can handle arbitrary measurement bases, but either use the min-entropy, which gives a loose lower bound to the von Neumann entropy, or rely on cumbersome dedicated algorithms. Based on a recently discovered semidefinite programming (SDP) hierarchy converging to the conditional von Neumann entropy, used for computing the asymptotic key rates in the device independent case, we introduce an SDP hierarchy that converges to the asymptotic secret key rate in the case of characterised devices. The resulting algorithm is efficient, easy to implement and easy to use. We illustrate its performance by recovering known bounds on the key rate and extending high-dimensional QKD protocols to previously intractable cases. We also use it to reanalyse experimental data to demonstrate how higher key rates can be achieved when the full statistics are taken into account.