论文标题

三角电位的Zeta功能

The Zeta Function for the Triangular Potential

论文作者

Naber, M. G.

论文摘要

研究了具有三角电位的Schrödinger方程的Zeta函数。使用WeierStrass分解定理和通过轮廓积分计算ZETA函数的值。在两种方法重叠的域重叠的情况下,发现结果是一致的。分析延续用于计算ZERA函数的值和负整数,探索POL结构(和残基值),以及原点处的斜率值。这些结果用于计算相关的哈密顿人的痕迹和决定因素。

The zeta functions for the Schrödinger equation with a triangular potential are investigated. Values of the zeta functions are computed using both the Weierstrass factorization theorem and analytic continuation via contour integration. The results were found to be consistent where the domains of the two methods overlap. Analytic continuation is used to compute values of the zeta functions at zero and the negative integers, explore the pole structure (and residue values), as well as the value of the slopes at the origin. Those results are used for the computation of the trace and determinant of the associated Hamiltonians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源