论文标题
使用有说服力的写作策略来解释和检测健康错误信息
Using Persuasive Writing Strategies to Explain and Detect Health Misinformation
论文作者
论文摘要
如今,错误信息的传播是社会上的一个突出问题。我们的研究重点是通过分析文本文档中采用的有说服力的策略来帮助自动识别错误信息。我们介绍了一种新颖的注释计划,其中包括共同的有说服力的写作策略,以实现我们的目标。此外,我们还提供了有关健康错误信息的数据集,并使用我们建议的计划彻底注释了专家。我们的贡献包括提出一项新的任务,以说服力的写作策略类型来注释文本。我们使用有说服力的策略作为其他信息来源评估了BERT家族的预先训练的语言模型以及GPT家族的生成大型语言模型的微调和及时工程技术。我们评估在错误信息检测的背景下采用说服力策略作为中间标签的影响。我们的结果表明,这些策略提高了准确性并提高了错误信息检测模型的解释性。有说服力的策略可以用作有价值的见解和解释,使其他模型甚至人类能够就信息的可信度做出更明智的决定。
Nowadays, the spread of misinformation is a prominent problem in society. Our research focuses on aiding the automatic identification of misinformation by analyzing the persuasive strategies employed in textual documents. We introduce a novel annotation scheme encompassing common persuasive writing tactics to achieve our objective. Additionally, we provide a dataset on health misinformation, thoroughly annotated by experts utilizing our proposed scheme. Our contribution includes proposing a new task of annotating pieces of text with their persuasive writing strategy types. We evaluate fine-tuning and prompt-engineering techniques with pre-trained language models of the BERT family and the generative large language models of the GPT family using persuasive strategies as an additional source of information. We evaluate the effects of employing persuasive strategies as intermediate labels in the context of misinformation detection. Our results show that those strategies enhance accuracy and improve the explainability of misinformation detection models. The persuasive strategies can serve as valuable insights and explanations, enabling other models or even humans to make more informed decisions regarding the trustworthiness of the information.