论文标题

Carnegie Supernova Project-II:IA Supernovae型近红外光谱多样性和模板

Carnegie Supernova Project-II: Near-infrared spectral diversity and template of Type Ia Supernovae

论文作者

Lu, Jing, Hsiao, Eric Y., Phillips, Mark M., Burns, Christopher R., Ashall, Chris, Morrell, Nidia, Ng, Lawrence, Kumar, Sahana, Shahbandeh, Melissa, Hoeflich, Peter, Baron, E., Uddin, Syed, Stritzinger, Maximilian D., Suntzeff, Nicholas B., Baltay, Charles, Davis, Scott, Diamond, Tiara R., Folatelli, Gaston, Förster, Francisco, Gagné, Jonathan, Galbany, Lluís, Gall, Christa, González-Gaitán, Santiago, Holmbo, Simon, Kirshner, Robert P., Krisciunas, Kevin, Marion, G. H., Perlmutter, Saul, Pessi, Priscila J., Piro, Anthony L., Rabinowitz, David, Ryder, Stuart D., Sand, David J.

论文摘要

我们提出了IA型超新星(SNE IA)的近红外(NIR)光谱的最大,最均匀的集合:339个单个SNE的光谱是Carnegie Supernova Project-II的一部分。这些光谱在6.5 M麦哲伦Baade望远镜上使用的火谱仪获得,光谱范围为0.8---2.5 $μ$ m。使用此样本,我们探讨了SNE IA的NIR光谱多样性,并构建一个光谱时间序列的模板,该模板是光曲线形状参数的函数,颜色stretch $ s_ {bv} $。主成分分析用于表征光谱特征的多样性,并将数据维度降低到较小的子空间。然后使用高斯工艺回归来模拟对相位和光曲线形状以及相关不确定性的子空间依赖性。我们的模板能够预测与$ s_ {bv} $相关的光谱变化,例如Hallmark Nir功能:早期的MG II和Peak后$ H $ band Break。与HSIAO模板相比,使用此模板将K校正中的系统不确定性降低了约90%。这些不确定性定义为使用颜色匹配模板和观察到的光谱计算的平均K校正差异,平均为$ 4 \ times10^{ - 4} $ mag。该模板可以用作光曲线钳工的基线光谱分布,并且可以识别可能指向引人注目的物理的特殊光谱特征。此处介绍的结果将大大改善附近和远处样品的未来SN界宇宙学实验。

We present the largest and most homogeneous collection of near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia): 339 spectra of 98 individual SNe obtained as part of the Carnegie Supernova Project-II. These spectra, obtained with the FIRE spectrograph on the 6.5 m Magellan Baade telescope, have a spectral range of 0.8--2.5 $μ$m. Using this sample, we explore the NIR spectral diversity of SNe Ia and construct a template of spectral time series as a function of the light-curve-shape parameter, color stretch $s_{BV}$. Principal component analysis is applied to characterize the diversity of the spectral features and reduce data dimensionality to a smaller subspace. Gaussian process regression is then used to model the subspace dependence on phase and light-curve shape and the associated uncertainty. Our template is able to predict spectral variations that are correlated with $s_{BV}$, such as the hallmark NIR features: Mg II at early times and the $H$-band break after peak. Using this template reduces the systematic uncertainties in K-corrections by ~90% compared to those from the Hsiao template. These uncertainties, defined as the mean K-correction differences computed with the color-matched template and observed spectra, are on the level of $4\times10^{-4}$ mag on average. This template can serve as the baseline spectral energy distribution for light-curve fitters and can identify peculiar spectral features that might point to compelling physics. The results presented here will substantially improve future SN~Ia cosmological experiments, for both nearby and distant samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源