论文标题

在线线性套索

Online Linearized LASSO

论文作者

Yang, Shuoguang, Yan, Yuhao, Zhu, Xiuneng, Sun, Qiang

论文摘要

稀疏回归一直是执行可变选择并增强所得统计模型的预测准确性和解释性的流行方法。现有方法集中在离线正规化回归上,而在线方案很少研究。在本文中,我们提出了一个新颖的在线稀疏线性回归框架,用于分析数据点依次到达时流数据。我们提出的方法是有效的,需要较少严格的强凸度假设。从理论上讲,我们表明,通过正确选择的正则化参数,我们的估计器的$ \ ell_2 $ -norm统计错误以$ \ tilde {o}的最佳顺序减少至零,{\ sqrt {\ sqrt {s/t}})$ $ \ tilde {o}(\ cdot)$隐藏对数项。数值实验证明了我们算法的实际效率。

Sparse regression has been a popular approach to perform variable selection and enhance the prediction accuracy and interpretability of the resulting statistical model. Existing approaches focus on offline regularized regression, while the online scenario has rarely been studied. In this paper, we propose a novel online sparse linear regression framework for analyzing streaming data when data points arrive sequentially. Our proposed method is memory efficient and requires less stringent restricted strong convexity assumptions. Theoretically, we show that with a properly chosen regularization parameter, the $\ell_2$-norm statistical error of our estimator diminishes to zero in the optimal order of $\tilde{O}({\sqrt{s/t}})$, where $s$ is the sparsity level, $t$ is the streaming sample size, and $\tilde{O}(\cdot)$ hides logarithmic terms. Numerical experiments demonstrate the practical efficiency of our algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源