论文标题
$ n = 3 $的广义辫子的分类动作
Categorical actions of generalised braids for $n=3$
论文作者
论文摘要
Khovanov和Thomas在派生的类别$ d(t^* fl_n)$上构建了编织组$ br_n $的分类动作,在$ \ mathbb {c}^n $的各种$ fl_n $的cotangent捆绑上的连贯的冰淇淋$ d(t^* fl_n)$。在本文中,我们定义了广义的编织类别$ gbr_3 $,为存在skein-triangulated $ gbr_3 $分类措施提供了足够条件,并构建了$ gbr_3 $ oon $ d(t^*(t^*(fl_3)(fl_3(fl_3(\ bar {i})$),$ gr_3 $的分类措施(\ bar {i})$ contion contical contical of themasic of thomas of thomas of thomas and thomas thomas and thomas thomas thomas thomas thomas thomas thomas con* fl_3)$。
Khovanov and Thomas constructed a categorical action of the braid group $Br_n$ on the derived category $D(T^* Fl_n)$ of coherent sheaves on the cotangent bundle of the variety $Fl_n$ of the complete flags in $\mathbb{C}^n$. In this paper, we define the generalised braid category $GBr_3$, give a sufficient condition for the existence of a skein-triangulated $GBr_3$ categorical action, and construct a categorical action of $GBr_3$ on $D(T^*(Fl_3(\bar{i}))$ that generalises Khovanov and Thomas categorical braid action on $D(T^* Fl_3)$.