论文标题
研究对对比对比的预测编码的增强,以编码人类活动识别
Investigating Enhancements to Contrastive Predictive Coding for Human Activity Recognition
论文作者
论文摘要
获得活动注释的挑战性质与从可穿戴设备收集数据收集的更直接性质之间的二分法引起了人们对利用大量未标记数据进行学习表示的技术的发展。对比性预测编码(CPC)就是一种方法,通过利用时间序列数据的属性来设置对比度的未来时间段预测任务来学习有效表示。在这项工作中,我们通过系统地研究编码器体系结构,聚合器网络和未来的时间段预测来提高CPC的增强,从而实现了完全卷积的体系结构,从而提高了并行性。在传感器位置和活动中,我们的方法对六个目标数据集中的四个显示了大幅改进,这表明了其赋予广泛应用程序方案能力的能力。此外,在标记数据非常有限的情况下,我们的技术显着优于监督和自我监管的基线,从而积极影响只有几秒钟的标记数据的情况。这是有希望的,因为CPC不需要专门的数据转换或重建来学习有效表示。
The dichotomy between the challenging nature of obtaining annotations for activities, and the more straightforward nature of data collection from wearables, has resulted in significant interest in the development of techniques that utilize large quantities of unlabeled data for learning representations. Contrastive Predictive Coding (CPC) is one such method, learning effective representations by leveraging properties of time-series data to setup a contrastive future timestep prediction task. In this work, we propose enhancements to CPC, by systematically investigating the encoder architecture, the aggregator network, and the future timestep prediction, resulting in a fully convolutional architecture, thereby improving parallelizability. Across sensor positions and activities, our method shows substantial improvements on four of six target datasets, demonstrating its ability to empower a wide range of application scenarios. Further, in the presence of very limited labeled data, our technique significantly outperforms both supervised and self-supervised baselines, positively impacting situations where collecting only a few seconds of labeled data may be possible. This is promising, as CPC does not require specialized data transformations or reconstructions for learning effective representations.