论文标题
循环作为边缘交叉点的$ K $均匀超图($ k \ le 6 $)的循环 - 一种建设性的方法
Cycles as edge intersection hypergraphs of $k$-uniform hypergraphs ($k \le 6$) -- a constructive approach
论文作者
论文摘要
如果$ {\ cal h} =(v,{\ cal e})$是一个超图,则其边缘相交超graph $ ei({\ cal h})=(v,v,{\ cal e}^{eii} $ \ in {\ cal e} \ \ wedge \ e_1 \ neq e_2 \ \ wedge \ | e_1 \ cap e_2 | \ geq 2 \} $。在本文中,我们分别考虑4-和5均匀的超图$ {\ cal H} $,使用$ ei({\ cal H})= C_N $。我们的结果填补了ARXIV中考虑的3-和6均匀情况之间的空白:1902.00396。
If ${\cal H}=(V,{\cal E})$ is a hypergraph, its edge intersection hypergraph $EI({\cal H})=(V,{\cal E}^{EI})$ has the edge set ${\cal E}^{EI}=\{e_1 \cap e_2 \ |\ e_1, e_2 \in {\cal E} \ \wedge \ e_1 \neq e_2 \ \wedge \ |e_1 \cap e_2 |\geq 2\}$. In the present paper, we consider 4- and 5-uniform hypergraphs ${\cal H}$, respectively, with $EI({\cal H}) = C_n$. Our results fill the gap between the 3- and the 6-uniform case considered in arXiv:1902.00396.