论文标题
坐标和WIGNER表示中的相干阶段状态
Coherent phase states in the coordinate and Wigner representations
论文作者
论文摘要
我们以数值研究相干相状态(CPS)的坐标波函数和Wigner函数,对它们与标准的差异(klauder-glauber-sudarshan)相干状态引起了主要的关注,尤其是在数量运算符的高平均值的情况下。在这种情况下,CPS可以具有强坐标(或动量)挤压,这大约是真空挤压状态的两倍。 Robertson-Schrödinger不变的不确定性产物在对数中随着数量运算符的平均值而增加(而标准相干状态为恒定)。考虑了CP的(非)高斯性的一些度量。
We study numerically the coordinate wave functions and the Wigner functions of the coherent phase states (CPS), paying the main attention to their differences from the standard (Klauder--Glauber--Sudarshan) coherent states, especially in the case of high mean values of the number operator. In this case, the CPS can possess a strong coordinate (or momentum) squeezing, which is, roughly, twice weaker than for the vacuum squeezed states. The Robertson--Schrödinger invariant uncertainty product in the CPS logarithmically increases with the mean value of the number operator (whereas it is constant for the standard coherent states). Some measures of (non)Gaussianity of CPS are considered.