论文标题
针对时域扩展源波形反演的算法分析
Algorithmic analysis towards time-domain extended source waveform inversion
论文作者
论文摘要
完整波形反转(FWI)通过比较观察到的和合成的地震图从初始模型中更新地下模型。由于非线性高,FWI很容易被捕获到局部最小值中。扩展域FWI,包括波场重建反转(WRI)和扩展源波形反演(ESI)是减轻此问题的有吸引力的选择。本文对扩展领域的FWI进行了深入的分析,确定了关键的挑战并寻找针对实际应用的潜在补救措施。 WRI和ESI使用基于拉格朗日的伴随状态方法在相同的数学框架内配制,使用扩展源专注于时间域公式,同时将经典FWI,WRI和ESI之间的连接放置:WRI和ESI都可以将其视为经典FWI的加权版本。由于对称的正定Hessian,探索了共轭梯度以有效地以无基质方式求解正常方程,而时间和频域波方程求解器都是可行的。这项研究发现,最重大的挑战来自于通过迭代来存储时间域波场的巨大存储需求。为了解决这一挑战,可以通过提取稀疏的频率波场或考虑时间域数据而不是波场来减少这种挑战来考虑两种可能的解决方法。我们建议应对可拖动的工作流进行更深入的探索这些选项。
Full waveform inversion (FWI) updates the subsurface model from an initial model by comparing observed and synthetic seismograms. Due to high nonlinearity, FWI is easy to be trapped into local minima. Extended domain FWI, including wavefield reconstruction inversion (WRI) and extended source waveform inversion (ESI) are attractive options to mitigate this issue. This paper makes an in-depth analysis for FWI in the extended domain, identifying key challenges and searching for potential remedies towards practical applications. WRI and ESI are formulated within the same mathematical framework using Lagrangian-based adjoint-state method with a special focus on time-domain formulation using extended sources, while putting connections between classical FWI, WRI and ESI: both WRI and ESI can be viewed as weighted versions of classic FWI. Due to symmetric positive definite Hessian, the conjugate gradient is explored to efficiently solve the normal equation in a matrix free manner, while both time and frequency domain wave equation solvers are feasible. This study finds that the most significant challenge comes from the huge storage demand to store time-domain wavefields through iterations. To resolve this challenge, two possible workaround strategies can be considered, i.e., by extracting sparse frequencial wavefields or by considering time-domain data instead of wavefields for reducing such challenge. We suggest that these options should be explored more intensively for tractable workflows.