论文标题
硬件优化的奇偶校验检查登机口,用于表面代码
Hardware optimized parity check gates for superconducting surface codes
论文作者
论文摘要
错误校正代码使用多量表测量来实现容忍量的量子逻辑步骤。实际上,该任务在很大程度上确定了扩展易于故障的量子计算硬件所需的资源。因此,定制下一代处理器以进行关节测量,可能会改善速度,准确性或成本 - 加速开发大型量子计算机。在这里,我们通过分析基于超导式传输量子台之间的多体相互作用的非常规的表面代码来激励这种探索。我们的中心考虑,硬件优化的奇偶校验(HOP)门,通过同时进行多Qubit条件相累积来实现稳定器型测量。尽管具有这种方法的多体效应,但我们对逻辑断层的估计表明,这种设计至少可以像传统设计一样强大到逼真的噪声。与标准代码的$ 0.79 \ times 10^{ - 3} $相比,我们显示的$ 1.25 \ times 10^{ - 3} $更高的门槛。但是,在HOP代码中,随着物理错误率降低,逻辑错误率降低了较慢。我们的结果表明,在其经验发展的曙光时,朝着扩展栅极模型平台进行误差校正的富有成果的道路。
Error correcting codes use multi-qubit measurements to realize fault-tolerant quantum logic steps. In fact, the resources needed to scale-up fault-tolerant quantum computing hardware are largely set by this task. Tailoring next-generation processors for joint measurements, therefore, could result in improvements to speed, accuracy, or cost -- accelerating the development large-scale quantum computers. Here, we motivate such explorations by analyzing an unconventional surface code based on multi-body interactions between superconducting transmon qubits. Our central consideration, Hardware Optimized Parity (HOP) gates, achieves stabilizer-type measurements through simultaneous multi-qubit conditional phase accumulation. Despite the multi-body effects that underpin this approach, our estimates of logical faults suggest that this design can be at least as robust to realistic noise as conventional designs. We show a higher threshold of $1.25 \times 10^{-3}$ compared to the standard code's $0.79 \times 10^{-3}$. However, in the HOP code the logical error rate decreases more slowly with decreasing physical error rate. Our results point to a fruitful path forward towards extending gate-model platforms for error correction at the dawn of its empirical development.