论文标题
切线捆绑包上正确的Biharmonic地图
Proper biharmonic maps on tangent bundle
论文作者
论文摘要
本文,我们通过n维riemannian歧管$(m,g)$在切线束$ tm $上定义了Mus-Mus-groadient指标。首先,我们研究了Mus梯度度量的几何形状,并描述了一类新的适当的Biharmonic地图。当所有因素都是欧几里得空间时,就构建了适当的双骑手图的示例。
This paper, we define the Mus-Gradient metric on tangent bundle $TM$ by a deformation non-conform of Sasaki metric over an n-dimensional Riemannian manifold $(M, g)$. First we investigate the geometry of the Mus-Gradient metric and we characterize a new class of proper biharmonic maps. Examples of proper biharmonic maps are constructed when all of the factors are Euclidean spaces.