论文标题

切线捆绑包上正确的Biharmonic地图

Proper biharmonic maps on tangent bundle

论文作者

Djaa, Nour Elhouda, Latti, Fethi, Zagane, Abderrahim

论文摘要

本文,我们通过n维riemannian歧管$(m,g)$在切线束$ tm $上定义了Mus-Mus-groadient指标。首先,我们研究了Mus梯度度量的几何形状,并描述了一类新的适当的Biharmonic地图。当所有因素都是欧几里得空间时,就构建了适当的双骑手图的示例。

This paper, we define the Mus-Gradient metric on tangent bundle $TM$ by a deformation non-conform of Sasaki metric over an n-dimensional Riemannian manifold $(M, g)$. First we investigate the geometry of the Mus-Gradient metric and we characterize a new class of proper biharmonic maps. Examples of proper biharmonic maps are constructed when all of the factors are Euclidean spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源