论文标题

邻居轨道:通过双方与邻居轨迹匹配改进单个对象跟踪

NeighborTrack: Improving Single Object Tracking by Bipartite Matching with Neighbor Tracklets

论文作者

Chen, Yu-Hsi, Wang, Chien-Yao, Yang, Cheng-Yun, Chang, Hung-Shuo, Lin, Youn-Long, Chuang, Yung-Yu, Liao, Hong-Yuan Mark

论文摘要

我们提出了一个称为邻居轨道的后处理器,它利用跟踪目标的邻居信息来验证和改进单对象跟踪(SOT)结果。它不需要其他数据或再培训。取而代之的是,它使用主干SOT网络预测的置信分数自动得出邻居信息,然后使用此信息来改善跟踪结果。在跟踪遮挡的目标时,其外观特征是不可信的。但是,暹罗网络通常无法通过仅阅读置信度得分来遮挡轨道对象,因为它可能会被置信度得分高的邻居误导。我们提出的邻居轨道利用未关注的邻居的信息来重新确认跟踪目标并减少闭塞目标时的错误跟踪。它不仅减少了由遮挡引起的影响,还可以修复因物体外观变化引起的跟踪问题。邻居轨道对SOT网络不可知和后处理方法。对于短期对象跟踪中通常使用的投票挑战数据集,我们平均通过$ {1.92 \%} $ eao和$ {2.11 \%} $ rostness提高了三个著名的SOT网络,Ocean,Transt和Ostrack。对于基于Ostrack的中期和长期跟踪实验,我们在Lasot上实现了最先进的$ {72.25 \%} $ AUC,$ {75.7 \%} $ ao在got-got-10k上。代码重复可以在https://github.com/franktpmvu/neighbortrack中找到。

We propose a post-processor, called NeighborTrack, that leverages neighbor information of the tracking target to validate and improve single-object tracking (SOT) results. It requires no additional data or retraining. Instead, it uses the confidence score predicted by the backbone SOT network to automatically derive neighbor information and then uses this information to improve the tracking results. When tracking an occluded target, its appearance features are untrustworthy. However, a general siamese network often cannot tell whether the tracked object is occluded by reading the confidence score alone, because it could be misled by neighbors with high confidence scores. Our proposed NeighborTrack takes advantage of unoccluded neighbors' information to reconfirm the tracking target and reduces false tracking when the target is occluded. It not only reduces the impact caused by occlusion, but also fixes tracking problems caused by object appearance changes. NeighborTrack is agnostic to SOT networks and post-processing methods. For the VOT challenge dataset commonly used in short-term object tracking, we improve three famous SOT networks, Ocean, TransT, and OSTrack, by an average of ${1.92\%}$ EAO and ${2.11\%}$ robustness. For the mid- and long-term tracking experiments based on OSTrack, we achieve state-of-the-art ${72.25\%}$ AUC on LaSOT and ${75.7\%}$ AO on GOT-10K. Code duplication can be found in https://github.com/franktpmvu/NeighborTrack.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源