论文标题
一个广义的双重鲁棒学习框架,用于单击转换率预测的曲折
A Generalized Doubly Robust Learning Framework for Debiasing Post-Click Conversion Rate Prediction
论文作者
论文摘要
点击转换率(CVR)预测是发现用户兴趣并增加平台收入在一系列工业应用中的重要任务。该任务中最具挑战性的问题之一是存在由用户的固有自我选择行为和系统选择过程引起的严重选择偏见。当前,双重强大的(DR)学习方法实现了CVR预测的最新性能。但是,在本文中,通过理论上分析了DR方法的偏见,方差和泛化界限,我们发现现有的DR方法可能是由于对倾向得分和插图错误的估计不准确而导致的概括不佳,而这些倾向得分和归因错误通常在实践中发生。在这种分析的促进下,我们提出了一个通用的学习框架,该框架不仅统一了现有的DR方法,而且还提供了一个宝贵的机会,可以开发一系列新的偏见技术以适应不同的应用程序场景。基于框架,我们提出了两种新的DR方法,即DR-BIAS和DR-MSE。 DR-BIAS直接控制DR损失的偏见,而Dr-MSE则可以灵活地平衡偏见和差异,从而实现了更好的概括性能。此外,我们提出了一种在CVR预测中DR-MSE的新型三级关节学习优化方法,并相应地提出了一种有效的训练算法。我们对现实世界和半合成数据集进行了广泛的实验,这些实验验证了我们提出的方法的有效性。
Post-click conversion rate (CVR) prediction is an essential task for discovering user interests and increasing platform revenues in a range of industrial applications. One of the most challenging problems of this task is the existence of severe selection bias caused by the inherent self-selection behavior of users and the item selection process of systems. Currently, doubly robust (DR) learning approaches achieve the state-of-the-art performance for debiasing CVR prediction. However, in this paper, by theoretically analyzing the bias, variance and generalization bounds of DR methods, we find that existing DR approaches may have poor generalization caused by inaccurate estimation of propensity scores and imputation errors, which often occur in practice. Motivated by such analysis, we propose a generalized learning framework that not only unifies existing DR methods, but also provides a valuable opportunity to develop a series of new debiasing techniques to accommodate different application scenarios. Based on the framework, we propose two new DR methods, namely DR-BIAS and DR-MSE. DR-BIAS directly controls the bias of DR loss, while DR-MSE balances the bias and variance flexibly, which achieves better generalization performance. In addition, we propose a novel tri-level joint learning optimization method for DR-MSE in CVR prediction, and an efficient training algorithm correspondingly. We conduct extensive experiments on both real-world and semi-synthetic datasets, which validate the effectiveness of our proposed methods.