论文标题
通过自动编码器和信明方法减少了参数化系统的订单建模:延续定期解决方案
Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions
论文作者
论文摘要
高度准确的对由部分微分方程(PDE)控制的复杂现象的模拟通常需要侵入性方法,并需要昂贵的计算成本,当近似PDE的稳态解决方案以用于控制参数和初始条件的多种组合时,这可能会变得过于敏锐。因此,构建有效的降低订单模型(ROM),以实现准确但快速的预测,同时保留物理现象的动态特征随着参数而变化,至关重要。在这项工作中,提出了一个由数据驱动的非侵入性框架结合在一起,该框架将ROM结构与减少的动态识别结合在一起。从有限数量的全订单解决方案开始,该建议的方法利用具有参数稀疏识别非线性动力学(SINDY)的自动编码器神经网络来构建低维动力模型。可以查询该模型以在新的参数实例中有效计算全日制解决方案,并直接馈送到继续算法。这些旨在跟踪周期性稳态响应作为系统参数功能的演变,避免瞬态阶段的计算,并允许检测不稳定性和分叉。提出的数据驱动的框架具有减少动力学的明确和参数化的建模,具有出色的功能,可以在时间和参数方面概括。在结构力学和流体动力学问题上的应用说明了所提出的方法的有效性和准确性。
Highly accurate simulations of complex phenomena governed by partial differential equations (PDEs) typically require intrusive methods and entail expensive computational costs, which might become prohibitive when approximating steady-state solutions of PDEs for multiple combinations of control parameters and initial conditions. Therefore, constructing efficient reduced order models (ROMs) that enable accurate but fast predictions, while retaining the dynamical characteristics of the physical phenomenon as parameters vary, is of paramount importance. In this work, a data-driven, non-intrusive framework which combines ROM construction with reduced dynamics identification, is presented. Starting from a limited amount of full order solutions, the proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model. This model can be queried to efficiently compute full-time solutions at new parameter instances, as well as directly fed to continuation algorithms. These aim at tracking the evolution of periodic steady-state responses as functions of system parameters, avoiding the computation of the transient phase, and allowing to detect instabilities and bifurcations. Featuring an explicit and parametrized modeling of the reduced dynamics, the proposed data-driven framework presents remarkable capabilities to generalize with respect to both time and parameters. Applications to structural mechanics and fluid dynamics problems illustrate the effectiveness and accuracy of the proposed method.