论文标题
非平衡相分离系统中二维接口的粗糙度
Roughening of two-dimensional interfaces in nonequilibrium phase-separated systems
论文作者
论文摘要
我表明,三维分离流体之间的非平衡二维接口表现出特殊的“亚物质”粗糙度。具体而言,横向范围$ l $的接口将垂直波动(即正常到平均表面取向)典型的RMS距离$ w \ equiv \ equiv \ sqrt {\ langle | h(\ br,t)|^2 \ rangle}长度和$ h(\ br,t)$是界面的高度,在二维位置$ \ br $时$ t $)。相反,三维流体之间平衡二维接口的粗糙度,服从$ w \ propto [\ ln {(l/a)}]^{1/2} $。精确案例的指数$ 1/3 $。此外,与$τ(l)\ propto l^3 [\ ln {(l/a)}]^{1/3} $相比,与简单的$ $τ(l)\ propto L^3 [\ ln {(l)\ propto缩放的特征时间缩放$τ(l)$相比,与简单的$ $τ(l)\ propto l^3 $缩放在平衡系统中与无保存的水平和无液体流动性相反。
I show that non-equilibrium two-dimensional interfaces between three dimensional phase separated fluids exhibit a peculiar "sub-logarithmic" roughness. Specifically, an interface of lateral extent $L$ will fluctuate vertically (i.e., normal to the mean surface orientation) a typical RMS distance $w\equiv\sqrt{\langle |h(\br,t)|^2\rangle} \propto [\ln{(L/a)}]^{1/3}$ (where $a$ is a microscopic length, and $ h(\br,t)$ is the height of the interface at two dimensional position $\br$ at time $t$). In contrast, the roughness of equilibrium two-dimensional interfaces between three dimensional fluids, obeys $w \propto [\ln{(L/a)}]^{1/2}$. The exponent $1/3$ for the active case is exact. In addition, the characteristic time scales $τ(L)$ in the active case scale according to $τ(L)\propto L^3 [\ln{(L/a)}]^{1/3}$, in contrast to the simple $τ(L)\propto L^3$ scaling found in equilibrium systems with conserved densities and no fluid flow.