论文标题
在最小表面的广义高斯图上,共享射道的超曲面
On generalized Gauss maps of minimal surfaces sharing hypersurfaces in a projective variety
论文作者
论文摘要
在本文中,我们研究了浸入$ \ mathbb r^{n+1} $中的最小表面(同一基础)的通用高斯图的唯一性问题,这些图在$ \ mathbb r^{n+1} $中具有与某些hypersurfaces相同的相同的逆图中的相同图像。众所周知,这是第一次研究在最小的表面上共享投影品种中共享超曲面的一般图。我们的结果概括并改善了该领域的先前结果。
In this article, we study the uniqueness problem for the generalized gauss maps of minimal surfaces (with the same base) immersed in $\mathbb R^{n+1}$ which have the same inverse image of some hypersurfaces in a projective subvariety $V\subset\mathbb P^n(\mathbb C)$. As we know, this is the first time the unicity of generalized gauss maps on minimal surfaces sharing hypersurfaces in a projective varieties is studied. Our results generalize and improve the previous results in this field.