论文标题

超越特征对齐的概括:概念激活引导的对比度学习

Generalization Beyond Feature Alignment: Concept Activation-Guided Contrastive Learning

论文作者

Liu, Yibing, Tian, Chris Xing, Li, Haoliang, Wang, Shiqi

论文摘要

通过对比学习的学习不变表示已在域概括(DG)中看到了最新的表现。尽管取得了如此成功,但在本文中,我们发现其核心学习策略(功能一致性)可能会严重阻碍模型的概括。从神经元的可解释性中绘制见解,我们从神经元激活视图中表征了这个问题。具体而言,通过将特征元素视为神经元激活状态,我们表明,传统的比对方法倾向于使学习不变特征的多样性恶化,因为它们不可分割地最大程度地减少了所有神经元激活差异。相反,这忽略了神经元之间的丰富关系 - 尽管激活模式不同,但其中许多人通常会确定相同的视觉概念。通过这一发现,我们提出了一种简单而有效的方法,概念对比(可可),它通过对比神经元中编码的高级概念来放松元素的特征对齐。我们的可可以插件方式执行,因此可以将其集成到DG中的任何对比方法中。我们在四种规范对比方法上评估可可,表明可可促进了特征表示的多样性,并始终提高模型的概括能力。通过通过神经元的覆盖分析取消这一成功,我们进一步发现,可可在训练过程中可能引起更有意义的神经元,从而改善模型学习。

Learning invariant representations via contrastive learning has seen state-of-the-art performance in domain generalization (DG). Despite such success, in this paper, we find that its core learning strategy -- feature alignment -- could heavily hinder model generalization. Drawing insights in neuron interpretability, we characterize this problem from a neuron activation view. Specifically, by treating feature elements as neuron activation states, we show that conventional alignment methods tend to deteriorate the diversity of learned invariant features, as they indiscriminately minimize all neuron activation differences. This instead ignores rich relations among neurons -- many of them often identify the same visual concepts despite differing activation patterns. With this finding, we present a simple yet effective approach, Concept Contrast (CoCo), which relaxes element-wise feature alignments by contrasting high-level concepts encoded in neurons. Our CoCo performs in a plug-and-play fashion, thus it can be integrated into any contrastive method in DG. We evaluate CoCo over four canonical contrastive methods, showing that CoCo promotes the diversity of feature representations and consistently improves model generalization capability. By decoupling this success through neuron coverage analysis, we further find that CoCo potentially invokes more meaningful neurons during training, thereby improving model learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源