论文标题

WR-ONE2SET:迈向精心校准的键形生成

WR-ONE2SET: Towards Well-Calibrated Keyphrase Generation

论文作者

Xie, Binbin, Wei, Xiangpeng, Yang, Baosong, Lin, Huan, Xie, Jun, Wang, Xiaoli, Zhang, Min, Su, Jinsong

论文摘要

键形生成旨在自动生成简短的短语,汇总输入文档。最近出现的One2set范式(Ye等,2021)生成了键形,并实现了竞争性能。然而,我们观察到一个2set输出的严重校准误差,尤其是在$ \ varnothing $令牌的过度估计中(意味着“无对应的键形”)。在本文中,我们深入分析了此限制,并确定了背后的两个主要原因:1)平行生成必须将过多的$ \ varnothing $作为填充代币引入培训实例; 2)将目标分配给每个插槽的训练机制是不稳定的,并进一步加剧了$ \ varnoth的$令牌过高估计。为了使模型良好校准,我们提出了WR-ONE2SET,该模型通过自适应实例级成本加权策略和目标重新分配机制扩展了一个2set。前者对不同实例的过度估计插槽进行动态惩罚,从而平滑训练分布。后者完善了原始的不当作业,并减少了过度估计的插槽的监督信号。对常用数据集的实验结果证明了我们提出的范式的有效性和普遍性。

Keyphrase generation aims to automatically generate short phrases summarizing an input document. The recently emerged ONE2SET paradigm (Ye et al., 2021) generates keyphrases as a set and has achieved competitive performance. Nevertheless, we observe serious calibration errors outputted by ONE2SET, especially in the over-estimation of $\varnothing$ token (means "no corresponding keyphrase"). In this paper, we deeply analyze this limitation and identify two main reasons behind: 1) the parallel generation has to introduce excessive $\varnothing$ as padding tokens into training instances; and 2) the training mechanism assigning target to each slot is unstable and further aggravates the $\varnothing$ token over-estimation. To make the model well-calibrated, we propose WR-ONE2SET which extends ONE2SET with an adaptive instance-level cost Weighting strategy and a target Re-assignment mechanism. The former dynamically penalizes the over-estimated slots for different instances thus smoothing the uneven training distribution. The latter refines the original inappropriate assignment and reduces the supervisory signals of over-estimated slots. Experimental results on commonly-used datasets demonstrate the effectiveness and generality of our proposed paradigm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源