论文标题

通过光谱正则学习稳定的图形神经网络

Learning Stable Graph Neural Networks via Spectral Regularization

论文作者

Gao, Zhan, Isufi, Elvin

论文摘要

图神经网络(GNN)的稳定性表征了GNN对图扰动的反应,并在噪声场景中提供了体系结构性能的保证。本文开发了一个自我调节的图神经网络(SR-GNN)解决方案,该解决方案通过使图谱谱域中的滤波器频率响应正规化来改善架构稳定性。 SR-GNN不仅将图形信号视为输入,而且还将基础图的特征向量视为,在该图形上处理信号以生成与任务相关的特征和特征向量的生成,以表征每一层的频率响应。我们通过最小化成本函数并将最大频率响应正规化接近一个来训练SR-GNN。前者改善了建筑性能,而后者则加强了扰动稳定性,并通过多层传播来减轻信息损失。我们进一步显示SR-GNN保留了置换量比,这允许探索图形信号的内部对称性并在相似的图形结构上展示转移。源定位和电影推荐的数值结果证实了我们的发现,并表明SR-GNN在不受干扰的图上与香草GNN的性能相当,但可以大大提高稳定性。

Stability of graph neural networks (GNNs) characterizes how GNNs react to graph perturbations and provides guarantees for architecture performance in noisy scenarios. This paper develops a self-regularized graph neural network (SR-GNN) solution that improves the architecture stability by regularizing the filter frequency responses in the graph spectral domain. The SR-GNN considers not only the graph signal as input but also the eigenvectors of the underlying graph, where the signal is processed to generate task-relevant features and the eigenvectors to characterize the frequency responses at each layer. We train the SR-GNN by minimizing the cost function and regularizing the maximal frequency response close to one. The former improves the architecture performance, while the latter tightens the perturbation stability and alleviates the information loss through multi-layer propagation. We further show the SR-GNN preserves the permutation equivariance, which allows to explore the internal symmetries of graph signals and to exhibit transference on similar graph structures. Numerical results with source localization and movie recommendation corroborate our findings and show the SR-GNN yields a comparable performance with the vanilla GNN on the unperturbed graph but improves substantially the stability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源