论文标题
稳定的树作为不均匀连续树的混合
Stable trees as mixings of inhomogeneous continuum random trees
论文作者
论文摘要
在Aldous,Miermont和Pitman [Ptrf,2004年]中据称,所有Lévy树都是不均匀的连续性随机树的混合。在稳定的分支机构的情况下,我们为这一主张提供了严格的证明,依靠一个新的程序来恢复与图形跨越树的距离,这些距离同时起作用,可用于稳定的树和不均匀的连续性随机树。
It has been claimed in Aldous, Miermont and Pitman [PTRF, 2004] that all Lévy trees are mixings of inhomogeneous continuum random trees. We give a rigorous proof of this claim in the case of a stable branching mechanism, relying on a new procedure for recovering the tree distance from the graphical spanning trees that works simultaneously for stable trees and inhomogeneous continuum random trees.