论文标题
绿色:通过模型的自动调整优化GPU,以提高能源效率
Going green: optimizing GPUs for energy efficiency through model-steered auto-tuning
论文作者
论文摘要
在过去的十年中,图形处理单元(GPU)彻底改变了计算环境。但是,配备GPU的数据中心和计算设施的能源需求不断增长,具有巨大的资本和环境成本。 GPU应用的能源消耗在很大程度上取决于它们的优化程度。自动调整是找到算法,应用程序和硬件参数的最佳组合,以优化GPU应用程序的性能。在本文中,我们在内核调谐器中介绍了新的能源监测和优化功能,这是GPU应用程序的通用自动调整工具。这些功能使我们能够调查执行时间调整和提高能源效率的各种方法之间的差异,并研究调整难度的差异。此外,我们用于GPU功耗的模型通过提供GPU可能最节能的时钟频率,从而大大降低了大型调整搜索空间。
Graphics Processing Units (GPUs) have revolutionized the computing landscape over the past decade. However, the growing energy demands of data centres and computing facilities equipped with GPUs come with significant capital and environmental costs. The energy consumption of GPU applications greatly depend on how well they are optimized. Auto-tuning is an effective and commonly applied technique of finding the optimal combination of algorithm, application, and hardware parameters to optimize performance of a GPU application. In this paper, we introduce new energy monitoring and optimization capabilities in Kernel Tuner, a generic auto-tuning tool for GPU applications. These capabilities enable us to investigate the difference between tuning for execution time and various approaches to improve energy efficiency, and investigate the differences in tuning difficulty. Additionally, our model for GPU power consumption greatly reduces the large tuning search space by providing clock frequencies for which a GPU is likely most energy efficient.