论文标题
线性编程的教程和实践:供应链和运输后勤方面的优化问题
Tutorial and Practice in Linear Programming: Optimization Problems in Supply Chain and Transport Logistics
论文作者
论文摘要
本教程是一份雄厚的指南,旨在为学生和从业者提供旨在了解线性编程的基本原理和实践的雄厚指南。这些练习演示了如何解决经典优化问题,并重点是供应链管理和运输物流中的空间分析。所有练习都显示用于解决它们的Python程序和优化库。第一章介绍了线性编程中的关键概念,并贡献了一个新的认知框架,以帮助学生和从业人员设置每个优化问题。认知框架以一种格式以直接应用到优化软件的格式来组织决策变量,约束,目标函数和变量界限。第二章在交付和服务计划物流的背景下介绍了两种类型的移动性优化问题(网络中的最短路径和最低成本旅行的最短路径)。第三章介绍了四种类型的空间优化问题(邻域覆盖,流捕获,区域异质性,服务覆盖范围),并贡献了一个工作流程,以可视化地图中优化的解决方案。该工作流使用图片中的地图创建决策变量,并使用免费地理信息系统(GIS)程序QGIS和GEODA。第四章介绍了三种类型的空间后勤问题(空间分布,流量最大化,仓库位置优化),并演示了如何在软件中扩展认知框架以达到解决方案。最后一章总结了经验教训,并提供了有关学生和从业者如何修改Phyton程序和GIS工作流以解决自己的优化问题并可视化结果的见解。
This tutorial is an andragogical guide for students and practitioners seeking to understand the fundamentals and practice of linear programming. The exercises demonstrate how to solve classical optimization problems with an emphasis on spatial analysis in supply chain management and transport logistics. All exercises display the Python programs and optimization libraries used to solve them. The first chapter introduces key concepts in linear programming and contributes a new cognitive framework to help students and practitioners set up each optimization problem. The cognitive framework organizes the decision variables, constraints, the objective function, and variable bounds in a format for direct application to optimization software. The second chapter introduces two types of mobility optimization problems (shortest path in a network and minimum cost tour) in the context of delivery and service planning logistics. The third chapter introduces four types of spatial optimization problems (neighborhood coverage, flow capturing, zone heterogeneity, service coverage) and contributes a workflow to visualize the optimized solutions in maps. The workflow creates decision variables from maps by using the free geographic information systems (GIS) programs QGIS and GeoDA. The fourth chapter introduces three types of spatial logistical problems (spatial distribution, flow maximization, warehouse location optimization) and demonstrates how to scale the cognitive framework in software to reach solutions. The final chapter summarizes lessons learned and provides insights about how students and practitioners can modify the Phyton programs and GIS workflows to solve their own optimization problem and visualize the results.