论文标题

文化分析:建模主观性,可扩展性,上下文性和时间性

An Analytics of Culture: Modeling Subjectivity, Scalability, Contextuality, and Temporality

论文作者

van Noord, Nanne, Wevers, Melvin, Blanke, Tobias, Noordegraaf, Julia, Worring, Marcel

论文摘要

文化与AI之间存在双向关系。 AI模型越来越多地用于分析文化,从而塑造了我们对文化的理解。另一方面,模型经过文化伪像的集合进行了培训,因此隐含地,并非总是正确地编码文化表达。这产生了张力,这两者都限制了AI用于分析文化的使用,并在文化复杂问题(例如偏见)方面引起了AI中的问题。 克服这种张力的一种方法是更广泛地考虑文化的复杂性和复杂性。我们使用四个指导文化探究的概念进行讨论:主观性,可扩展性,上下文性和时间性。我们专注于这些概念,因为它们在AI研究中尚未得到足够的代表。我们认为,将这些方面的可能实施到AI研究中会导致AI更好地捕捉文化的复杂性。在接下来的内容中,我们简要描述了这四个概念及其在AI研究中的缺席。对于每个概念,我们都定义了可能的研究挑战。

There is a bidirectional relationship between culture and AI; AI models are increasingly used to analyse culture, thereby shaping our understanding of culture. On the other hand, the models are trained on collections of cultural artifacts thereby implicitly, and not always correctly, encoding expressions of culture. This creates a tension that both limits the use of AI for analysing culture and leads to problems in AI with respect to cultural complex issues such as bias. One approach to overcome this tension is to more extensively take into account the intricacies and complexities of culture. We structure our discussion using four concepts that guide humanistic inquiry into culture: subjectivity, scalability, contextuality, and temporality. We focus on these concepts because they have not yet been sufficiently represented in AI research. We believe that possible implementations of these aspects into AI research leads to AI that better captures the complexities of culture. In what follows, we briefly describe these four concepts and their absence in AI research. For each concept, we define possible research challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源