论文标题

$ p $ - 适用于时间域麦克斯韦方程的不连续的Galerkin解决方案中的自适应算法

$p$-adaptive algorithms in Discontinuous Galerkin solutions to the time-domain Maxwell's equations

论文作者

Tiwari, Apurva, Chatterjee, Avijit

论文摘要

不连续的Galerkin时间域方法非常适合自适应算法来解决时间域的麦克斯韦方程,并取决于健壮且经济上可计算的驱动因素。自适应算法利用局部指标动态识别区域并为计算域中不同精度的空间操作员分配。这项工作确定了适应性驱动因素的必要属性,并开发了两种方法,一种基于特征的方法,由本地场的梯度引导,另一种利用了在数值解决方案中经常发现的差异误差,用于时间域麦克斯韦方程。给出了电磁散射的规范测试案例的结果,突出了两种方法的关键特征及其计算性能。

The Discontinuous Galerkin time-domain method is well suited for adaptive algorithms to solve the time-domain Maxwell's equations and depends on robust and economically computable drivers. Adaptive algorithms utilize local indicators to dynamically identify regions and assign spatial operators of varying accuracy in the computational domain. This work identifies requisite properties of adaptivity drivers and develops two methods, a feature-based method guided by gradients of local field, and another utilizing the divergence error often found in numerical solution to the time-domain Maxwell's equations. Results for canonical testcases of electromagnetic scattering are presented, highlighting key characteristics of both methods, and their computational performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源