论文标题

在新闻和历史之间:识别Wikipedia集体关注的联网主题

Between News and History: Identifying Networked Topics of Collective Attention on Wikipedia

论文作者

Gildersleve, Patrick, Lambiotte, Renaud, Yasseri, Taha

论文摘要

数字信息格局引入了一个新的维度,以了解我们如何共同对新信息做出反应并在社会层面保存。这加上Wikipedia等平台的出现,对当前事件与事件历史记录之间关系的传统观点提出了挑战,以及“新闻”和“历史”之间的鸿沟不断差异。因此,维基百科作为互联网的主要参考工作的位置提出了一个问题,即它如何代表传统的百科全书知识和不断发展的重要新闻报道。换句话说,如何在Wikipedia现有的局部结构中关注时事的信息和关注?为了解决这个问题,我们为主题检测开发了一种时间社区检测方法,该方法考虑了注意力的短期动态以及长期的文章网络结构。我们将此方法应用于Wikipedia一年的时事数据集,以识别与仅在页面查看时间序列相关性或静态网络结构中发现的群集。我们能够通过集体注意力动力学与链接结构的相对重要性来解决更强烈反映当前事件的主题,而与更确定的知识。我们还通过识别和描述Wikipedia的新兴主题来提供重要的发展。这项工作提供了一种区分这些信息和注意力集群如何与维基百科的双面知识知识和时事相关的方法,这对于了解数字时代的知识的生产和消费至关重要。

The digital information landscape has introduced a new dimension to understanding how we collectively react to new information and preserve it at the societal level. This, together with the emergence of platforms such as Wikipedia, has challenged traditional views on the relationship between current events and historical accounts of events, with an ever-shrinking divide between "news" and "history". Wikipedia's place as the Internet's primary reference work thus poses the question of how it represents both traditional encyclopaedic knowledge and evolving important news stories. In other words, how is information on and attention towards current events integrated into the existing topical structures of Wikipedia? To address this we develop a temporal community detection approach towards topic detection that takes into account both short term dynamics of attention as well as long term article network structures. We apply this method to a dataset of one year of current events on Wikipedia to identify clusters distinct from those that would be found solely from page view time series correlations or static network structure. We are able to resolve the topics that more strongly reflect unfolding current events vs more established knowledge by the relative importance of collective attention dynamics vs link structures. We also offer important developments by identifying and describing the emergent topics on Wikipedia. This work provides a means of distinguishing how these information and attention clusters are related to Wikipedia's twin faces of encyclopaedic knowledge and current events -- crucial to understanding the production and consumption of knowledge in the digital age.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源