论文标题

6G的网络内深学习的功能拆分:可行性研究

Functional Split of In-Network Deep Learning for 6G: A Feasibility Study

论文作者

He, Jia, Wu, Huanzhuo, Xiao, Xun, Bassoli, Riccardo, Fitzek, Frank H. P.

论文摘要

在现有的移动网络系统中,数据平面(DP)主要被视为由网络元素端到端转发用户数据运输组成的管道。但是,随着可编程网络设备的快速成熟度,移动网络基础架构将突变为可编程计算平台。因此,这样的可编程DP可以为许多应用程序服务提供网络计算功能。在本文中,我们以网络内深学习(DL)功能来增强数据平面。但是,网络内智能可能是网络设备的重大负担。然后,应用功能拆分的范式,以便将深神经网络(DNN)分解为数据平面的子元素,以使机器学习推断作业更有效。作为概念验证,我们以盲目的分离(BSS)问题为例,以展示这种方法的好处。我们在全栈模拟器中实施了拟议的增强功能,并通过专业数据集提供定量评估。作为初步试验,我们的研究提供了采用网络内智能(例如6G)的未来移动网络系统设计的有见地的指南。

In existing mobile network systems, the data plane (DP) is mainly considered a pipeline consisting of network elements end-to-end forwarding user data traffics. With the rapid maturity of programmable network devices, however, mobile network infrastructure mutates towards a programmable computing platform. Therefore, such a programmable DP can provide in-network computing capability for many application services. In this paper, we target to enhance the data plane with in-network deep learning (DL) capability. However, in-network intelligence can be a significant load for network devices. Then, the paradigm of the functional split is applied so that the deep neural network (DNN) is decomposed into sub-elements of the data plane for making machine learning inference jobs more efficient. As a proof-of-concept, we take a Blind Source Separation (BSS) problem as an example to exhibit the benefits of such an approach. We implement the proposed enhancement in a full-stack emulator and we provide a quantitative evaluation with professional datasets. As an initial trial, our study provides insightful guidelines for the design of the future mobile network system, employing in-network intelligence (e.g., 6G).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源