论文标题

通过多边界最佳运输的强大风险管理

Robust risk management via multi-marginal optimal transport

论文作者

Ennaji, Hamza, Mérigot, Quentin, Nenna, Luca, Pass, Brendan

论文摘要

我们研究了给定输出函数的光谱风险度量的问题,该问题取决于几个基本变量,其单个分布是已知的,但其联合分布却不是。我们建立并利用了此问题与多核心最佳运输问题之间的等效性。对于大量的输出功能,我们使用此重新制定来建立明确的,封闭式的解决方案。对于更高的尺寸基础变量,我们确定了输出函数和边际分布的条件,在该变量上,解决方案集中在第一个变量上的图上,并且是唯一的,并且对于一般输出功能,我们在溶液支持的维度上找到了上限。当输出函数,边际分布和光谱函数受到干扰时,我们还基于最大值和最大化关节分布建立稳定性结果;另外,当变量一维时,我们表明最佳值对某些输出函数的边缘分布表现出Lipschitz的依赖性。最后,我们表明,与多 - 距离最佳运输问题的等效性扩展到多维风险的最大相关度量。在这种情况下,我们再次建立了溶液将溶液集中在第一个边缘上的图上的条件。

We study the problem of maximizing a spectral risk measure of a given output function which depends on several underlying variables, whose individual distributions are known but whose joint distribution is not. We establish and exploit an equivalence between this problem and a multi-marginal optimal transport problem. We use this reformulation to establish explicit, closed form solutions when the underlying variables are one dimensional, for a large class of output functions. For higher dimensional underlying variables, we identify conditions on the output function and marginal distributions under which solutions concentrate on graphs over the first variable and are unique, and, for general output functions, we find upper bounds on the dimension of the support of the solution. We also establish a stability result on the maximal value and maximizing joint distributions when the output function, marginal distributions and spectral function are perturbed; in addition, when the variables one dimensional, we show that the optimal value exhibits Lipschitz dependence on the marginal distributions for a certain class of output functions. Finally, we show that the equivalence to a multi-marginal optimal transport problem extends to maximal correlation measures of multi-dimensional risks; in this setting, we again establish conditions under which the solution concentrates on a graph over the first marginal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源