论文标题

分布外检测的剥离扩散模型

Denoising diffusion models for out-of-distribution detection

论文作者

Graham, Mark S., Pinaya, Walter H. L., Tudosiu, Petru-Daniel, Nachev, Parashkev, Ourselin, Sebastien, Cardoso, M. Jorge

论文摘要

分布式检测对于机器学习系统的安全部署至关重要。当前,无监督的分布检测取决于基于生成的方法,这些方法利用了生成模型的可能性或其他测量结果的估计。基于重建的方法提供了一种替代方法,其中使用重建误差的度量来确定样品是否分布。但是,基于重建的方法不太受青睐,因为它们需要仔细调整模型的信息瓶颈(例如潜在维度的大小),以产生良好的结果。在这项工作中,我们利用了将扩散概率模型(DDPM)视为将瓶颈通过施加的噪声量控制的瓶颈的视图。我们建议使用DDPM来重建已通向一系列噪声水平的输入,并使用所得的多维重建误差来对分布外输入进行分类。我们在标准的计算机视觉数据集和更高维度的医疗数据集上验证我们的方法。我们的方法的表现不仅优于基于重建的方法,而且要优于基于最新生成的方法。代码可在https://github.com/marksgraham/ddpm-ood上找到。

Out-of-distribution detection is crucial to the safe deployment of machine learning systems. Currently, unsupervised out-of-distribution detection is dominated by generative-based approaches that make use of estimates of the likelihood or other measurements from a generative model. Reconstruction-based methods offer an alternative approach, in which a measure of reconstruction error is used to determine if a sample is out-of-distribution. However, reconstruction-based approaches are less favoured, as they require careful tuning of the model's information bottleneck - such as the size of the latent dimension - to produce good results. In this work, we exploit the view of denoising diffusion probabilistic models (DDPM) as denoising autoencoders where the bottleneck is controlled externally, by means of the amount of noise applied. We propose to use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs. We validate our approach both on standard computer-vision datasets and on higher dimension medical datasets. Our approach outperforms not only reconstruction-based methods, but also state-of-the-art generative-based approaches. Code is available at https://github.com/marksgraham/ddpm-ood.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源