论文标题
通过机会价值功能预测通过储能价格套利
Energy Storage Price Arbitrage via Opportunity Value Function Prediction
论文作者
论文摘要
本文提出了一种新颖的存储价格套利算法,将监督学习与动态编程结合在一起。拟议的方法使用神经网络直接预测不同能源存储的最终电源级别的机会成本,然后将预测的机会成本输入基于模型的套利控制算法以进行最佳决策。我们使用价格数据和动态编程算法生成历史最佳机会价值函数,然后将其用作地面真理和历史价格作为训练机会价值函数预测模型的预测因素。在案例研究中,使用纽约州的不同储能模型和价格数据,我们的方法与完美的远见相比,获得了65%至90%的利润,这大大优于现有的基于模型的方法和基于学习的方法。在确保高利润率的同时,该算法也具有轻巧的加权,并且可以以最低的计算成本进行培训和实施。我们的结果还表明,学到的预测模型具有出色的可传递性。使用来自一个地区的价格数据训练的预测模型在对其他区域进行测试时也提供了良好的套利结果。
This paper proposes a novel energy storage price arbitrage algorithm combining supervised learning with dynamic programming. The proposed approach uses a neural network to directly predicts the opportunity cost at different energy storage state-of-charge levels, and then input the predicted opportunity cost into a model-based arbitrage control algorithm for optimal decisions. We generate the historical optimal opportunity value function using price data and a dynamic programming algorithm, then use it as the ground truth and historical price as predictors to train the opportunity value function prediction model. Our method achieves 65% to 90% profit compared to perfect foresight in case studies using different energy storage models and price data from New York State, which significantly outperforms existing model-based and learning-based methods. While guaranteeing high profitability, the algorithm is also light-weighted and can be trained and implemented with minimal computational cost. Our results also show that the learned prediction model has excellent transferability. The prediction model trained using price data from one region also provides good arbitrage results when tested over other regions.