论文标题

NCPA与CCA结合的概率证明

A Probabilistic Proof of the nCPA to CCA Bound

论文作者

Morris, Ben, Oberschelp, Hans

论文摘要

我们提供了Maurer,Renard和Pietzak结果的新证明,即随机排列的NCPA优势$ P $和$ Q $绑定了CCA的CCA优势$ P^{ - 1} \ Circ Q $。我们的证明与信息理论直接使用概率,并且具有提供低CCA优势的替代条件的优势。也就是说,随机置换的CCA优势可以通过其与均匀分布的分离距离界定。在特殊情况下,我们使用这种替代条件来拧紧关于交换或不混乱的安全性的最著名的界限,即比纸牌数量的平方根少的疑问。

We provide a new proof of Maurer, Renard, and Pietzak's result that the sum of the nCPA advantages of random permutations $P$ and $Q$ bound the CCA advantage of $P^{-1} \circ Q$. Our proof uses probability directly, as opposed to information theory, and has the advantage of providing an alternate sufficient condition of low CCA advantage. Namely, the CCA advantage of a random permutation can be bounded by its separation distance from the uniform distribution. We use this alternate condition to tighten the best known bound on the security of the swap-or-not shuffle in the special case of having fewer queries than the square root of the number of cards.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源