论文标题

光学和磁截图的时间依赖性理论

Time-dependent theory of optical electro- and magnetostriction

论文作者

Partanen, Mikko, Anghinoni, Bruno, Astrath, Nelson G. C., Tulkki, Jukka

论文摘要

电截图是电场影响下介电材料的变形,对光学具有不断的兴趣。 Hakim和Higham的经典实验[Proc。物理。 Soc。 80,190(1962)]对于固定场,与Astrath等人最近的实验相比,静止的场支持了电扭曲力密度的不同公式。 [光科学。应用。 11,103(2022)]用于光场。在这项工作中,我们通过开发光子材料中光电密度的时间依赖性的协变理论来研究这种差异的起源。当光脉冲在散装电介质中传播时,场诱导的力密度由两个部分组成:(i)光波动量力密度携带光的波动动量,并驱动向前驱动着协变量耦合的田间 - 材料 - 材料光的光线状态。 (ii)光静止力密度来自电场和磁场能密度的原子密度依赖性。它代表了基于光学洛伦兹法律的光学和磁性力密度,以静态电磁场而闻名,并源自虚拟工作原理。由于光结力密度完成的工作不等于材料收缩期间场能密度的变化,因此我们必须通过与OpoStriction相关的耗散术语来描述这种差异,以实现能量保护。耗散的详细物理模型留下来进行进一步的工作。可以通过材料内的场诱导的一对相互作用来理解光屏性力密度。由于相关的作用和反应效应,该力密度不能导致光场的净动量转移。我们还使用该理论模拟通过介电材料的高斯光脉冲的传播。

Electrostriction, the deformation of dielectric materials under the influence of an electric field, is of continuous interest in optics. The classic experiment by Hakim and Higham [Proc. Phys. Soc. 80, 190 (1962)] for a stationary field supports a different formula of the electrostrictive force density than the recent experiment by Astrath et al. [Light Sci. Appl. 11, 103 (2022)] for an optical field. In this work, we study the origin of this difference by developing a time-dependent covariant theory of optical force densities in photonic materials. When a light pulse propagates in a bulk dielectric, the field-induced force density consists of two parts: (i) The optical wave momentum force density carries the wave momentum of light and drives forward a mass density wave of the covariant coupled field-material state of light. (ii) The optostrictive force density arises from the atomic density dependence of the electric and magnetic field energy densities. It represents an optical Lorentz-force-law-based generalization of the electro- and magnetostrictive force densities well known for static electromagnetic fields and derived from the principle of virtual work. Since the work done by the optostrictive force density is not equal to the change of the field energy density during the contraction of the material, we have to describe this difference by optostriction-related dissipation terms to fulfill the energy conservation. The detailed physical model of the dissipation is left for further works. The optostrictive force density can be understood in terms of field-induced pair interactions inside the material. Because of the related action and reaction effects, this force density cannot contribute to the net momentum transfer of the optical field. We also use the theory to simulate the propagation of a Gaussian light pulse through a dielectric material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源