论文标题

Bregman近端方法的收敛速度:本地几何与规律性与清晰度

The rate of convergence of Bregman proximal methods: Local geometry vs. regularity vs. sharpness

论文作者

Azizian, Waïss, Iutzeler, Franck, Malick, Jérôme, Mertikopoulos, Panayotis

论文摘要

我们研究了Bregman近端方法的最后近期收敛速率 - 从镜像到镜像及其乐观的变体 - 作为定义该方法的Prox-Mapping引起的局部几何形状的函数。对于普遍性,我们专注于受约束,非符号变化不平等的局部解决方案,并且我们表明,给定方法的收敛速率急剧取决于其相关的Legendre指数,该概念衡量了基本的Bregman函数(Euclidean,groutopic,groutopic或其他)的概念。特别是,我们表明边界解决方案表现出零和非零legendre指数的方法之间的严格分离:前者以线性速率收敛,而后者通常会收敛。与在欧几里得正则化下有限数量的步骤中相比,在线性约束的问题中,这种二分法变得更加明显,在线性约束的问题中,熵正则化的方法沿着尖锐的方向实现线性收敛速率。

We examine the last-iterate convergence rate of Bregman proximal methods - from mirror descent to mirror-prox and its optimistic variants - as a function of the local geometry induced by the prox-mapping defining the method. For generality, we focus on local solutions of constrained, non-monotone variational inequalities, and we show that the convergence rate of a given method depends sharply on its associated Legendre exponent, a notion that measures the growth rate of the underlying Bregman function (Euclidean, entropic, or other) near a solution. In particular, we show that boundary solutions exhibit a stark separation of regimes between methods with a zero and non-zero Legendre exponent: the former converge at a linear rate, while the latter converge, in general, sublinearly. This dichotomy becomes even more pronounced in linearly constrained problems where methods with entropic regularization achieve a linear convergence rate along sharp directions, compared to convergence in a finite number of steps under Euclidean regularization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源