论文标题
探索li $ _ {1.1} $ ni $ _ {0.35} $ Mn $ _ {0.55} $ _ {0.55} $ o $ $ _2 $电池,探索li $ _ {1.1} $ _ {1.1} $ _ {1.1}中的纳米级起源
Exploring the nanoscale origin of performance enhancement in Li$_{1.1}$Ni$_{0.35}$Mn$_{0.55}$O$_2$ batteries due to chemical doping
论文作者
论文摘要
尽管由于电动汽车的能源储能材料的巨大潜力,因此由于它们的每单位成本高能密度的结合以及环境和道德问题的减少,但基于分层的MN氧化物的无共锂离子电池目前缺乏其同类产品的寿命和稳定性。在这里,我们证明了通过化学掺杂的这种性能差距的减少,其中li $ _ {1.1} $ ni $ _ {0.35} $ mn $ _ {0.55} $ $ $ _2 $达到159 mahg $^{ - 1} $ at C/3速率的初始放电能力,在C/3速率和相应的承担率为150 cat。随后,我们通过高级衍射,光谱和电子显微镜技术的结合来探索这种改进的纳米级起源,发现优化优化的掺杂曲线的结构和化学兼容性改善了两个组成和化学的兼容性,从而在层次的MN氧化物系统中表征了层次构建层的层构建层的层构建层。我们还直接使用校正扫描透射电子显微镜和综合差分相对比成像的异常校正了表面附近的宿主化合物的结构稳定效应。
Despite significant potential as energy storage materials for electric vehicles due to their combination of high energy density per unit cost and reduced environmental and ethical concerns, Co-free lithium ion batteries based off layered Mn oxides presently lack the longevity and stability of their Co-containing counterparts. Here, we demonstrate a reduction in this performance gap via chemical doping, with Li$_{1.1}$Ni$_{0.35}$Mn$_{0.55}$O$_2$ achieving an initial discharge capacity of 159 mAhg$^{-1}$ at C/3 rate and a corresponding capacity retention of 94.3% after 150 cycles. We subsequently explore the nanoscale origins of this improvement through a combination of advanced diffraction, spectroscopy, and electron microscopy techniques, finding that optimized doping profiles lead to an improved structural and chemical compatibility between the two constituent sub-phases that characterize the layered Mn oxide system, resulting in the formation of unobstructed lithium ion pathways between them. We also directly observe a structural stabilization effect of the host compound near the surface using aberration corrected scanning transmission electron microscopy and integrated differential phase contrast imaging.