论文标题
ebweyl:一个代码不变的数值空间表征
EBWeyl: a Code to Invariantly Characterize Numerical Spacetimes
论文作者
论文摘要
为了不变地表征数值相对性宇宙学模拟产生的空间,我们提出了两种不同的方法来计算Weyl Tensor的电和磁性部位,即$ e_ {αβ} $和$ b_ {αβ} $,从中我们构建了snecar nakariants和Weyl scallars。第一种方法是几何方法,从度量中全部计算这些张量,第二种方法使用了3+1切片公式。我们为每种方法开发了一个代码,并在五个分析指标上测试了它们,为此我们得出了$ e_ {αβ} $和$ b_ {αβ} $,以及使用计算机代数软件构建的各种标量。我们发现分析结果和数值结果之间有着极好的一致性。切片代码的表现优于计算便利性和准确性的几何代码;在此基础上,我们将其在Github公开使用,名称为Ebweyl [https://github.com/robynlm/ebweyl]。我们强调,此后处理代码适用于任何规格的数值空间。
In order to invariantly characterise spacetimes resulting from cosmological simulations in numerical relativity, we present two different methodologies to compute the electric and magnetic parts of the Weyl tensor, $E_{αβ}$ and $B_{αβ}$, from which we construct scalar invariants and the Weyl scalars. The first method is geometrical, computing these tensors in full from the metric, and the second uses the 3+1 slicing formulation. We developed a code for each method and tested them on five analytic metrics, for which we derived $E_{αβ}$ and $B_{αβ}$ and the various scalars constructed from them with computer algebra software. We find excellent agreement between the analytic and numerical results. The slicing code outperforms the geometrical code for computational convenience and accuracy; on this basis we make it publicly available in github with the name EBWeyl [ https://github.com/robynlm/ebweyl ]. We emphasize that this post-processing code is applicable to numerical spacetimes in any gauge.