论文标题

使用变压器替代模型设计无人飞行器

Design of Unmanned Air Vehicles Using Transformer Surrogate Models

论文作者

Cobb, Adam D., Roy, Anirban, Elenius, Daniel, Jha, Susmit

论文摘要

计算机辅助设计(CAD)是用于应用人工智能(AI)和机器学习(ML)的有希望的新领域。当前的网络物理系统设计实践使用数字双胞胎方法,其中实际的物理设计是在构建可以通过物理模拟模型来评估的详细模型之前进行的。这些物理模型通常很慢,手动设计过程通常依赖于探索现有设计的几乎变化。 AI具有打破这些设计筒仓并通过加速设计空间探索设计的多样性和性能的希望。在本文中,我们着重于电气无人机(UAV)的设计。高密度电池和纯电气推进系统破坏了无人机设计的空间,使该域成为基于AI的设计的理想目标。在本文中,我们开发了一个AI设计师,该设计师综合了新型无人机设计。我们的方法使用深层变压器模型,具有新颖的域特异性编码,以便我们可以评估新提出的设计的性能,而无需运行昂贵的飞行动力学模型和CAD工具。我们证明我们的方法大大减少了设计过程的总体计算要求,并加速了设计空间探索。最后,我们确定了未来的研究指示,以实现无人机AI辅助CAD的全面部署。

Computer-aided design (CAD) is a promising new area for the application of artificial intelligence (AI) and machine learning (ML). The current practice of design of cyber-physical systems uses the digital twin methodology, wherein the actual physical design is preceded by building detailed models that can be evaluated by physics simulation models. These physics models are often slow and the manual design process often relies on exploring near-by variations of existing designs. AI holds the promise of breaking these design silos and increasing the diversity and performance of designs by accelerating the exploration of the design space. In this paper, we focus on the design of electrical unmanned aerial vehicles (UAVs). The high-density batteries and purely electrical propulsion systems have disrupted the space of UAV design, making this domain an ideal target for AI-based design. In this paper, we develop an AI Designer that synthesizes novel UAV designs. Our approach uses a deep transformer model with a novel domain-specific encoding such that we can evaluate the performance of new proposed designs without running expensive flight dynamics models and CAD tools. We demonstrate that our approach significantly reduces the overall compute requirements for the design process and accelerates the design space exploration. Finally, we identify future research directions to achieve full-scale deployment of AI-assisted CAD for UAVs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源