论文标题

编码功能监督的UNET ++:重新设计肝脏和肿瘤分段的监督

Encoding feature supervised UNet++: Redesigning Supervision for liver and tumor segmentation

论文作者

Cui, Jiahao, Xiao, Ruoxin, Fang, Shiyuan, Pei, Minnan, Yu, Yixuan

论文摘要

CT图像中的肝肿瘤分割是对肝病诊断,外科计划和术后评估的关键步骤。自动肝脏和肿瘤分割方法可以极大地减轻医生检查CT图像的大量工作量,并更好地提高诊断的准确性。在过去的几十年中,文献中已经提出了许多基于U-NET模型的修改。但是,高级UNET ++模型的改进相对较少。在我们的论文中,我们提出了一个监督的unet ++(ES-UNET ++)的编码特征,并将其应用于肝脏和肿瘤分割。 ES-UNET ++由编码UNET ++和分割UNET ++组成。训练有素的编码UNET ++可以提取标签映射的编码功能,该特征用于额外监督分割UNET ++。通过在分段UNET ++的每个编码器中添加监督,构成UNET ++的不同深度的U-NET均优于原始版本的骰子得分为5.7%,因此总体骰子得分的提高了2.1%。通过数据集LIT进行评估ES-UNET ++,肝脏分割率达到95.6%,在骰子评分中分割肿瘤分段为67.4%。在本文中,我们还通过在ES-UNET ++和UNET ++之间进行比较Anaylsis来结论ES-UNET ++的一些宝贵特性。编码功能监督可以加速模型的融合。(2)编码功能监督可以通过提供巨大的速度来实现良好的模型来增强模型的效果,同时提供良好的良好模型。

Liver tumor segmentation in CT images is a critical step in the diagnosis, surgical planning and postoperative evaluation of liver disease. An automatic liver and tumor segmentation method can greatly relieve physicians of the heavy workload of examining CT images and better improve the accuracy of diagnosis. In the last few decades, many modifications based on U-Net model have been proposed in the literature. However, there are relatively few improvements for the advanced UNet++ model. In our paper, we propose an encoding feature supervised UNet++(ES-UNet++) and apply it to the liver and tumor segmentation. ES-UNet++ consists of an encoding UNet++ and a segmentation UNet++. The well-trained encoding UNet++ can extract the encoding features of label map which are used to additionally supervise the segmentation UNet++. By adding supervision to the each encoder of segmentation UNet++, U-Nets of different depths that constitute UNet++ outperform the original version by average 5.7% in dice score and the overall dice score is thus improved by 2.1%. ES-UNet++ is evaluated with dataset LiTS, achieving 95.6% for liver segmentation and 67.4% for tumor segmentation in dice score. In this paper, we also concluded some valuable properties of ES-UNet++ by conducting comparative anaylsis between ES-UNet++ and UNet++:(1) encoding feature supervision can accelerate the convergence of the model.(2) encoding feature supervision enhances the effect of model pruning by achieving huge speedup while providing pruned models with fairly good performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源