论文标题
Spade4:基于流行病的预测的稀疏性和延迟嵌入
SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics
论文作者
论文摘要
预测疾病的演变是具有挑战性的,尤其是当数据可用性稀缺和不完整时。建模和预测传染病流行的最流行的工具是隔间模型。他们根据健康状况将种群分为隔室,并使用动态系统对这些隔室的动力学进行建模。但是,由于疾病传播和人类相互作用的复杂性,这些预定义的系统可能无法捕获流行病的真实动态。为了克服这一弊端,我们提出了基于预测流行病的稀疏性和延迟嵌入的预测(Spade4)。 Spade4预测了可观察变量的未来轨迹,而没有其他变量或基础系统的知识。我们使用具有稀疏回归的随机特征模型来处理数据稀缺问题,并采用Takens延迟嵌入定理来从观察到的变量中捕获基础系统的性质。我们表明,当应用于模拟和真实数据时,我们的方法的表现优于隔室模型。
Predicting the evolution of diseases is challenging, especially when the data availability is scarce and incomplete. The most popular tools for modelling and predicting infectious disease epidemics are compartmental models. They stratify the population into compartments according to health status and model the dynamics of these compartments using dynamical systems. However, these predefined systems may not capture the true dynamics of the epidemic due to the complexity of the disease transmission and human interactions. In order to overcome this drawback, we propose Sparsity and Delay Embedding based Forecasting (SPADE4) for predicting epidemics. SPADE4 predicts the future trajectory of an observable variable without the knowledge of the other variables or the underlying system. We use random features model with sparse regression to handle the data scarcity issue and employ Takens' delay embedding theorem to capture the nature of the underlying system from the observed variable. We show that our approach outperforms compartmental models when applied to both simulated and real data.